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Abstract:  The formation of cyclopenta[cd]pyrene (5) and benzo[ghi]fluoranthene (6) upon FVT of 3,9- 
bisethynylphenanthrene (1) and 8-ethynylfluoranthene (2), respectively, suggests that redundant ethynyl 
substituents, which cannot give five- and/or six-membered ring formation via ethynyl ethylidene carbene 
equilibration followed by carbene C-H insertion, can migrate along the PAH periphery at high temperatures. 
© 1997 Elsevier Science Ltd. 

Ethynylated Polycyclic Aromatic Hydrocarbons (E-PAH), thought to arise from C2 or ethyne (C2H2) 

addition to small PAH, are frequently postulated as important precursors for the build up of (non)-alternant PAH 

during combustion.I This proposal has been substantiated by Flash Vacuum Thermolysis (FVT) experiments 

using (multiple) ethynylated PAH (E-PAH). With an appropriate substitution pattern they are efficiently 

converted into PAH containing additional fused five- and/or six-membered rings, 2 Their formation under 

unimolecular FVT conditions is rationalized by invoking ethynyl ethylidene carbene equilibration followed by 

carbene C-H insertion. 2 Although in general this process appears to be irreversible, i.e. upon repyrolysis of the 

fused product no E-PAH are formed, evidence for reversible carbene C-H insertion has been reported recently. 3 

Furthermore, the fused products subsequently may undergo selective rearrangements or conversions via ring- 

contraction/ring-expansion, 2 C2 extrusion, 2,4 etc. at high temperatures in the gas phase. 

An intriguing issue remains to be addressed. What is the fate of redundant ethynyl substituents, i.e. 

those incapable of five- or six-membered ring formation, viz. by carbene C-H insertion after ethynyl ethylidene 

carbene equilibration? 

We here report the results of FVT experiments using 3.9-bisethynylphenanthrene (1) 5 and 8-(I- 

chloroethenyl)fluoranthene (10), 6 i.e. a facile FVT precursor for 8-ethynylfluoranthene (2), 6,7 which were 

designed to give an answer to this question. Compounds 1 and 2 were selected for the following two reasons. 

1) They are ethynylated derivatives of the abundant combustion effluents phenanthrene (3; C I4HI t / )  and 

fluoranthene (4; C I 6 H I O ) .  2) They are representatives of the C18HIO potential energy surface, which also 

comprises the ubiquitous PAH effluents cyclopenta[cd]pyrene (5) 8 and benzo[ghilfluoranthene (6). 9 For 1 we 

anticipated that, in analogy with the efficient FVT conversion of 9-ethynylphenanthrene (7) into 

acephenanthrylene (8),1° the 9-ethynyl substituent will give cyclopenta-fusion, i.e. 1 will be converted into 9- 

ethynylacephenanthrylene (9). In contrast, the 3-ethynyl substituent of 1 will be redundant for ring formation. 
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Hence, other processes, such as ring-contraction/ring-expansion 2,10 of 9 giving 8-ethynylfluoranthene (2) 6 or 

C2 extrusion 2,4 furnishing 8 followed by its rearrangement into 4,10 will occur. Although in the case of 2, the 

8-ethynyl substituent will also be redundant for ring formation, its fluoranthene core is known to be highly 

resistent to rearrangement at high temperatures in the gas phase.l° 

FVT (quartz tube length 40 cm, diameter 2.5 cm, subl. temp. 130 °C, rate 50 mgh -I and 10 -2 Tort) of 1 

at 1000 °C gave a pyrolysate (mass recovery 50%) consisting mainly of 9-ethynylacephenanthrylene (9, 85%). 

This suggests that the primary thermal process is indeed cyclopenta-fusion involving the 9-ethynyl substituent, 

whereas the 3-ethynyl substituent remains unchanged. Besides 9, 8-ethynylfluoranthene (2, 8%), fluoranthene 

(4, 2%), cyclopenta[cd]pyrene (5, 1%) and acephenanthrylene (8, 4%), were unequivocally identified (Scheme 

1). Similar to the thermal rearrangement of 8 into 4,10 2 has to be derived from 9. The presence of the C16H10 

PAH 4 and 8 indicates that C2 extrusion 2,4 is apparently a competitive process. The formation of 5, however, is 

less straightforward. Under unimolecular FVT conditions it formally requires the unprecedented migration of the 

redundant 9-ethynyl substituent of 9 to the 10-position followed by ethynyl ethylidene carbene equilibration and 

carbene C-H insertion, i .e. six-membered ring formation! Additional support for the viability of this process is 

obtained upon FVT of 1 at 1025 °C (mass recovery 31%). Besides an increase in yield of 2 (12%), 4 (7%) and 

8 (16%), the amount of 5 (8%) also increases considerably. Unfortunately, FVT of 1 at higher temperatures is 

thwarted as a consequence of the onset of carbonization in the hot zone of the quartz tube. 

Scheme 1 
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To gain further insight in the propensity of redundant ethynyl substituents towards migration 8-(1- 

chloroethenyl)fluoranthene (10) 6 was subjected to FVT (subl. temp. 90 °C, rate 50 mgh -1 and 10 -2 Torr). 

Whereas at T < 1000 °C (mass recoveries > 50%) only 8-ethynylfluoranthene (2) was obtained, 6 at 1100 °C 

(mass recovery 25 %), besides 2 (60%), 4 (28%) and, more interestingly, benzo[ghi]fluoranthene (6; 12%) 

were unambiguously identified (Scheme 2). At 1200 °C (mass recovery 21%) concomitant with increased 

conversion of 2 (52%) the yields of both 4 (31%) and 6 (17%) increase. The presence of 4 suggests that 2 is 

also susceptible to C2 extrusion. 2,4 However, like the formation of 5 from 1, the identification of 6 points to the 

occurrence of ethynyl migration along the PAH periphery! 

Hence, we propose that another process with apparently a higher activation energy involving the 

formation of transient cyclobuta-PAH intermediates, 11 followed by retro-carbene C-H insertion, becomes 

operational. For 1 and 2, this leads to the conversion of 9-ethynylacephenanthrylene (9) and 8- 

ethynylfluoranthene (2) ultimately into the ethylidene carbene tautomers of 10-ethynylacephenanthrylene (13, 

see Scheme 1 ) and 9-ethynylfluoranthene (16, see Scheme 2), respectively, which are FVT precursors for 5 and 

6. 2 It is noteworthy that for 2 this conjecture is fully corroborated by semiempirical AMI calculations. 12 

S c h e m e  2 
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In summary, our data suggest that in E-PAH redundant ethynyl substituents, which cannot participate in 

direct five- and/or six-membered ring formation migrate along the PAH periphery presumably via transient 

cyclobuta-PAH intermediates. These results are of particular importance for the rationalization of the build up of 

ubiquitous PAH effluents during combustion.l.2 
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